Angular Distributions in EMPIRE

D. Brown, BNL

a passion for discovery

CN angular distributions in EMPIRE

- Previously CN angular distr.
 were calculated by rescaling ECIS results - not fully consistent and cumbersome
- Native EMPIRE calculations required replacing T_I with T_{Ij}
- New HRTW subroutine was totally recoded in F90

2

Standard view of two-body reaction

Computing angular distributions is easy, right?

 The angle-differential cross section for a two body channel in EMPIRE is the usual

$$\frac{\overline{d}\overline{\sigma}_{a\to b}}{d\Omega_b} = \frac{d\overline{\sigma}_{a\to b}^{dir}}{d\Omega_b} + \frac{d\overline{\sigma}_{a\to b}^{CN}}{d\Omega_b}$$

where either term can be written

$$\frac{d\overline{\sigma}_{a\to b}}{d\Omega_b} = \left(\frac{2\pi}{\hbar}\right)^4 \mu_a \mu_b \frac{k_b}{k_a} \frac{1}{2I_x + 1} \frac{1}{2I_A + 1} \sum_{L=0}^{\infty} B_L(\underline{b}, \underline{a}; E_a) P_L(\mu)$$

• textbooks give B_L in channel spin S_a - l_a (S_a = I_A + I_x) coupling:

$$B_L(\underline{b},\underline{a};E_a) = \sum_{S_a,S_b} \frac{(-)^{S_b-S_a}}{4} \sum_{J\ell_a\ell_b} \sum_{J'\ell'_a\ell'_b} \bar{Z}(\ell_a J\ell'_a J';S_a L) \bar{Z}(\ell_b J\ell'_b J';S_b L) \Re \left[T^{J*}_{\{\underline{a};\ell_a S_a\} \to \{\underline{b};\ell_b S_b\}} T^{J'}_{\{\underline{a};\ell'_a S_a\} \to \{\underline{b};\ell'_b S_b\}} \right]$$

Textbook equations don't work for Hauser-Feshbach

- Natural coupling for transmission coefficients is T_{lj} so need j_a - I_A (j_a = I_x + l_a) coupling
- Result is

$$B_{L}(\underline{b},\underline{a};E_{a}) = \frac{1}{4} \sum_{J\ell_{a}\ell_{b}j_{a}j_{b}} \sum_{J'\ell'_{a}\ell'_{b}j'_{a}j'_{b}} \bar{Z}(\ell_{a}j_{a}\ell'_{a}j'_{a};I_{x}L)\bar{Z}(\ell_{b}j_{b}\ell'_{b}j'_{b};I_{y}L)\Re\left[T^{J*}_{\{\underline{a};\ell_{a}j_{a}\}\to\{\underline{b};\ell_{b}j_{b}\}}T^{J'}_{\{\underline{a};\ell'_{a}j'_{a}\}\to\{\underline{b};\ell'_{b}j'_{b}\}}\right] \times (-1)^{-I_{A}-I_{x}+I_{B}+I_{y}}(2J+1)(2J'+1)\left\{\begin{array}{ccc} j_{a} & J & I_{A} \\ J' & j'_{a} & L \end{array}\right\}\left\{\begin{array}{ccc} j_{b} & J & I_{B} \\ J' & j'_{b} & L \end{array}\right\}$$
(Note: here

- I lost two weeks of my life (re)deriving this
- Simplifying to the HF case:

$$B_{L}(\underline{b},\underline{a};E_{a}) = \frac{1}{4} \sum_{J\ell_{a}\ell_{b}j_{a}j_{b}} \bar{Z}(\ell_{a}j_{a}\ell_{a}j_{a};I_{x}L)\bar{Z}(\ell_{b}j_{b}\ell_{b}j_{b};I_{y}L) \overline{\left|T_{\{\underline{a};\ell_{a}j_{a}\}\rightarrow\{\underline{b};\ell_{b}j_{b}\}}\right|^{2}}$$

$$\times (-1)^{-I_{A}-I_{x}+I_{B}+I_{y}} (2J+1)^{2} \left\{ \begin{array}{ccc} j_{a} & J & I_{A} \\ J & j_{a} & L \end{array} \right\} \left\{ \begin{array}{ccc} j_{b} & J & I_{B} \\ J & j_{b} & L \end{array} \right\}$$

$$= \frac{1}{4} \sum_{I\ell} \sum_{j,j} \bar{Z}(\ell_{a}j_{a}\ell_{a}j_{a};I_{x}L)\bar{Z}(\ell_{b}j_{b}\ell_{b}j_{b};I_{y}L) \overline{\left|T_{\{\underline{a};\ell_{a}j_{a}\}\rightarrow\{\underline{b};\ell_{b}j_{b}\}}\right|^{2}}$$

(Note: here T is T-matrix, not transmission coefficient)

Brookhaven Science Associates \times $(-1)^{-I_A-I_x+I_B+I_y+2(j_a+j_b)}(2J+1)^2\mathcal{W}\left(j_aJj_aJ;I_AL\right)\mathcal{W}\left(j_bJj_bJ;I_BL\right)$ LABORATORY

As I said, we coded this in EMPIRE

- To make sure it was right, we wrote F95 unit tests for
 - 3-j symbols
 - 6-j symbols
 - Racah coefficients
 - 9-j symbols
 - Blatt-Biedenharn Z and Z-bar coefficients
- Along the way, we found bugs in the equivalent routines in Fudge (Python) and CoH (C++) and made fixes
 - (T.K., I still have to get you yours)
- We couldn't figure out TALYS implementation and suspect it is wrong

9

This wasn't enough testing, so we compared EMPIRE to RRR data

HF only works on smooth cross section, so we smoothed the angular distributions from Leal's 56Fe resonances

How did we smooth?

 Assume we can smooth cross section & Legendre moments of angular PDF:

$$\left\langle \frac{d\sigma(E)}{d\Omega} \right\rangle \approx \frac{\langle \sigma(E) \rangle}{4\pi} \sum_{L=0}^{\infty} P_L(\mu) \left\langle C_L(E) \right\rangle$$

where can use Lorenzian (or Gaussian it turns out)

$$\langle f(E) \rangle = \int_{-\infty}^{\infty} dE' L(E, E') f(E')$$

$$= f(E + iI)$$

More proof the darn thing works (L=1)

More proof the darn thing works (L=2)

More proof the darn thing works (L=3)

More proof the darn thing works (L=4)

More proof the darn thing works (L=5)

More proof the darn thing works (L=6)

